Skip to content

在现代 Web 开发中,数据上传的需求日益增多,特别是在处理大规模数据时,传统的大文件上传方式已经难以满足高效、稳定的需求。本文将结合实际项目,详细介绍如何在 Vue 3 和 TypeScript 环境中实现大文件分片上传,并进行性能优化。

1. 项目技术栈

项目采用了以下技术栈:

  • 前端:Vue 3 + TypeScript + Vue Router + Pinia + Element Plus + Axios + Normalize.css

    • 使用 Vue 3 Composition API 和 Pinia 管理全局状态,确保代码结构清晰,状态管理便捷。
    • TypeScript 提供了强大的类型检查机制,减少了运行时错误,增强了代码的可维护性。
    • Vue Router 4 负责管理应用路由,Element Plus 提供了丰富的 UI 组件,而 Axios 则用于处理网络请求。
    • 使用 Vite 作为开发和构建工具,提升了开发效率。
  • 后端:Node.js + Koa.js + TypeScript + Koa Router

    • 通过 Koa.js 与 TypeScript 的结合,使用 Koa Router 加强服务端路由管理,优化开发体验,并集成了全局异常拦截与日志功能。

2. 前端设计与实现

前端的核心在于如何高效处理大文件的上传。传统的单一文件上传方式容易因网络波动导致上传失败,而分片上传则能有效避免此类问题。以下是分片上传的主要实现步骤:

  1. 文件切片: 使用 Blob.prototype.slice 方法,将大文件切分为多个 10MB 的小块。每个切片都具有唯一的标识,确保了上传的完整性和正确性。文件秒传,即在服务端已经存在了上传的资源,所以当用户再次上传时会直接提示上传成功。文件秒传需要依赖上一步生成的 hash,即在上传前,先计算出文件 hash,并把 hash 发送给服务端进行验证,由于 hash 的唯一性,所以一旦服务端能找到 hash 相同的文件,则直接返回上传成功的信息即可。

    tsx
    const CHUNK_SIZE = 10 * 1024 * 1024
    
    // 文件上传服务器
    async function submitUpload() {
      if (!file.value) {
        ElMessage.error('Oops, 请您选择文件后再操作~~.')
        return
      }
    
      // 将文件切片
      const chunks: IFileSlice[] = []
      let cur = 0
      while (cur < file.value.raw!.size) {
        const slice = file.value.raw!.slice(cur, cur + CHUNK_SIZE)
        chunks.push({
          chunk: slice,
          size: slice.size
        })
        cur += CHUNK_SIZE
      }
    
      // 计算hash
      hash.value = await calculateHash(chunks)
      fileChunks.value = chunks.map((item, index) => ({
        ...item,
        hash: `${hash.value}-${index}`,
        progress: 0
      }))
      // 校验文件是否已存在
      await fileStore.verifyFileAction({
        filename: file.value.name,
        fileHash: hash.value
      })
      const { exists } = storeToRefs(fileStore)
      if (!exists.value) {
        await uploadChunks({
          chunks,
          hash: hash.value,
          totalChunksCount: fileChunks.value.length,
          uploadedChunks: 0
        })
      } else {
        ElMessage.success('秒传: 文件上传成功')
      }
    }
  2. 并发上传与调度: 实现了一个并发控制的 Scheduler,限制同时上传的切片数为 3,避免因过多并发请求导致的系统卡顿或崩溃。

    tsx
    // scheduler.ts
    export class Scheduler {
      private queue: (() => Promise<void>)[] = []
      private maxCount: number
      private runCounts = 0
    
      constructor(limit: number) {
        this.maxCount = limit
      }
    
      add(promiseCreator: () => Promise<void>) {
        this.queue.push(promiseCreator)
        this.run()
      }
    
      private run() {
        if (this.runCounts >= this.maxCount || this.queue.length === 0) {
          return
        }
        this.runCounts++
        const task = this.queue.shift()!
        task().finally(() => {
          this.runCounts--
          this.run()
        })
      }
    }
    
    // UploadFile.vue
    // 切片上传 limit-限制并发数
    async function uploadChunks({
      chunks,
      hash,
      totalChunksCount,
      uploadedChunks,
      limit = 3
    }: IUploadChunkParams) {
      const scheduler = new Scheduler(limit)
      const totalChunks = chunks.length
      let uploadedChunksCount = 0
    
      for (let i = 0; i < chunks.length; i++) {
        const { chunk } = chunks[i]
    
        let h = ''
        if (chunks[i].hash) {
          h = chunks[i].hash as string
        } else {
          h = `${hash}-${chunks.indexOf(chunks[i])}`
        }
    
        const params = {
          chunk,
          hash: h,
          fileHash: hash,
          filename: file.value?.name as string,
          size: file.value?.size
        } as IUploadChunkControllerParams
    
        scheduler.add(() => {
          const controller = new AbortController()
          controllersMap.set(i, controller)
          const { signal } = controller
    
          console.log(`开始上传切片 ${i}`)
          if (!upload.value) {
            return Promise.reject('上传暂停')
          }
    
          return fileStore
            .uploadChunkAction(params, onTick, i, signal)
            .then(() => {
              console.log(`完成切片的上传 ${i}`)
              uploadedChunksCount++
              // 判断所有切片都已上传完成后,调用mergeRequest方法
              if (uploadedChunksCount === totalChunks) {
                mergeRequest()
              }
            })
            .catch((error) => {
              if (error.name === 'AbortError') {
                console.log('上传被取消')
              } else {
                throw error
              }
            })
            .finally(() => {
              // 完成后将控制器从map中移除
              controllersMap.delete(i)
            })
        })
      }
    
      function onTick(index: number, percent: number) {
        chunks[index].percentage = percent
    
        const newChunksProgress = chunks.reduce(
          (sum, chunk) => sum + (chunk.percentage || 0),
          0
        )
        const totalProgress =
          (newChunksProgress + uploadedChunks * 100) / totalChunksCount
    
        file.value!.percentage = Number(totalProgress.toFixed(2))
      }
    }
  3. Web Worker 计算文件 Hash: 为了避免阻塞主线程,使用 Web Worker 计算每个切片的 Hash 值,用于服务器端的文件校验。这一步确保了文件的唯一性,避免了重复上传。

    tsx
    // hash.ts
    import SparkMD5 from 'spark-md5'
    const ctx: Worker = self as any
    ctx.onmessage = (e) => {
      // 接收主线程的通知
      const { chunks } = e.data
      const blob = new Blob(chunks)
      const spark = new SparkMD5.ArrayBuffer()
      const reader = new FileReader()
    
      reader.onload = (e) => {
        spark.append(e.target?.result as ArrayBuffer)
        const hash = spark.end()
        ctx.postMessage({
          progress: 100,
          hash
        })
      }
      reader.onerror = (e: any) => {
        ctx.postMessage({
          error: e.message
        })
      }
      reader.onprogress = (e) => {
        if (e.lengthComputable) {
          const progress = (e.loaded / e.total) * 100
          ctx.postMessage({
            progress
          })
        }
      }
      // 读取Blob对象的内容
      reader.readAsArrayBuffer(blob)
    }
    ctx.onerror = (e) => {
      ctx.postMessage({
        error: e.message
      })
    }
    
    // UploadFile.vue
    // 使用Web Worker进行hash计算的函数
    function calculateHash(fileChunks: IFileSlice[]): Promise<string> {
      return new Promise<string>((resolve, reject) => {
        const worker = new HashWorker()
        worker.postMessage({ chunks: fileChunks })
        worker.onmessage = (e) => {
          const { hash } = e.data
          if (hash) {
            resolve(hash)
          }
        }
        worker.onerror = (event) => {
          worker.terminate()
          reject(event.error)
        }
      })
    }
  4. 断点续传与秒传: 通过前端判断服务器上已有的文件切片,支持断点续传和秒传功能。用户不需要重新上传整个文件,而只需上传未完成的部分,极大地提升了上传效率。

    tsx
    // 上传暂停和继续
    async function handlePause() {
      upload.value = !upload.value
      if (upload.value) {
        // 校验文件是否已存在
        if (!file.value?.name) {
          return
        }
        await fileStore.verifyFileAction({
          filename: file.value.name,
          fileHash: hash.value
        })
        const { exists, existsList } = storeToRefs(fileStore)
        const newChunks = fileChunks.value.filter((item) => {
          return !existsList.value.includes(item.hash || '')
        })
        console.log('newChunks', newChunks)
        if (!exists.value) {
          await uploadChunks({
            chunks: newChunks,
            hash: hash.value,
            totalChunksCount: fileChunks.value.length,
            uploadedChunks: fileChunks.value.length - newChunks.length
          })
        } else {
          ElMessage.success('秒传: 文件上传成功')
        }
      } else {
        console.log('暂停上传')
        abortAll()
      }
    }
  5. 用户体验优化: 为了提升用户体验,添加了拖拽上传、上传进度显示、文件暂停与续传等功能。这些优化不仅增强了系统的健壮性,还使用户在处理大文件时体验更为流畅。

3. 后端实现与整合

后端使用 Koa.js 构建,核心在于如何高效接收并合并前端上传的文件切片。具体步骤如下:

  1. 文件接收与存储: 通过 Koa Router 定义的 API 端点接收前端上传的切片,使用 ctx.request.files 获取上传的文件,并通过 ctx.request.body 获取其他字段信息。

    tsx
    // verify.ts 校验文件是否存储
    import { type Context } from 'koa'
    import {
      type IUploadedFile,
      type GetFileControllerResponse,
      type IVefiryFileControllerParams,
      type VefiryFileControllerResponse
    } from '../utils/types'
    import fileSizesStore from '../utils/fileSizesStore'
    import { HttpError, HttpStatus } from '../utils/http-error'
    import {
      UPLOAD_DIR,
      extractExt,
      getChunkDir,
      getUploadedList,
      isValidString
    } from '../utils'
    import { IMiddleware } from 'koa-router'
    import { Controller } from '../controller'
    
    import path from 'path'
    import fse from 'fs-extra'
    
    const fnVerify: IMiddleware = async (
      ctx: Context,
      next: () => Promise<void>
    ) => {
      const { filename, fileHash } = ctx.request
        .body as IVefiryFileControllerParams
      if (!isValidString(fileHash)) {
        throw new HttpError(HttpStatus.PARAMS_ERROR, 'fileHash 不能为空')
      }
      if (!isValidString(filename)) {
        throw new HttpError(HttpStatus.PARAMS_ERROR, 'filename 不能为空')
      }
      const ext = extractExt(filename!)
      const filePath = path.resolve(UPLOAD_DIR, `${fileHash}${ext}`)
      let isExist = false
      let existsList: string[] = []
      if (fse.existsSync(filePath)) {
        isExist = true
      } else {
        existsList = await getUploadedList(fileHash!)
      }
      ctx.body = {
        code: 0,
        data: { exists: isExist, existsList: existsList }
      } as VefiryFileControllerResponse
    
      await next()
    }
    
    // 获取所有已上传文件的接口
    const fnGetFile: IMiddleware = async (
      ctx: Context,
      next: () => Promise<void>
    ): Promise<void> => {
      const files = await fse.readdir(UPLOAD_DIR).catch(() => [])
      const fileListPromises = files
        .filter((file) => !file.endsWith('.json'))
        .map(async (file) => {
          const filePath = path.resolve(UPLOAD_DIR, file)
          const stat = fse.statSync(filePath)
          const ext = extractExt(file)
          let fileHash = ''
          let size = stat.size
          if (file.includes('chunkDir_')) {
            fileHash = file.slice('chunkDir_'.length)
            const chunkDir = getChunkDir(fileHash)
            const chunks = await fse.readdir(chunkDir)
            let totalSize = 0
            for (const chunk of chunks) {
              const chunkPath = path.resolve(chunkDir, chunk)
              const stat = await fse.stat(chunkPath)
              totalSize += stat.size
            }
            size = totalSize
          } else {
            fileHash = file.slice(0, file.length - ext.length)
          }
          const total = await fileSizesStore.getFileSize(fileHash)
          return {
            name: file,
            uploadedSize: size,
            totalSize: total,
            time: stat.mtime.toISOString(),
            hash: fileHash
          } as IUploadedFile
        })
      const fileList = await Promise.all(fileListPromises)
      ctx.body = {
        code: 0,
        data: { files: fileList }
      } as GetFileControllerResponse
    
      await next()
    }
    
    const controllers: Controller[] = [
      {
        method: 'POST',
        path: '/api/verify',
        fn: fnVerify
      },
      {
        method: 'GET',
        path: '/api/files',
        fn: fnGetFile
      }
    ]
    
    export default controllers
    tsx
    // upload.ts 上传切片
    import { IMiddleware } from 'koa-router'
    import { UPLOAD_DIR, extractExt, getChunkDir, isValidString } from '../utils'
    import fileSizesStore from '../utils/fileSizesStore'
    import { HttpError, HttpStatus } from '../utils/http-error'
    import {
      type IUploadChunkControllerParams,
      type UploadChunkControllerResponse
    } from '../utils/types'
    import path from 'path'
    import fse from 'fs-extra'
    import { Controller } from '../controller'
    import { Context } from 'koa'
    import koaBody from 'koa-body'
    
    const fnUpload: IMiddleware = async (
      ctx: Context,
      next: () => Promise<void>
    ) => {
      const { filename, fileHash, hash, size } = ctx.request
        .body as IUploadChunkControllerParams
    
      const chunkFile = ctx.request.files?.chunk
      if (!chunkFile || Array.isArray(chunkFile)) {
        throw new Error(`无效的块文件参数`)
      }
      const chunk = await fse.readFile(chunkFile.filepath)
      if (!isValidString(fileHash)) {
        throw new HttpError(HttpStatus.PARAMS_ERROR, 'fileHash 不能为空: ')
      }
      if (isValidString(chunk)) {
        throw new HttpError(HttpStatus.PARAMS_ERROR, 'chunk 不能为空')
      }
      if (!isValidString(filename)) {
        throw new HttpError(HttpStatus.PARAMS_ERROR, 'filename 不能为空')
      }
      const params = {
        filename,
        fileHash,
        hash,
        chunk,
        size
      } as IUploadChunkControllerParams
    
      fileSizesStore.storeFileSize(fileHash, size)
      const ext = extractExt(params.filename!)
      const filePath = path.resolve(UPLOAD_DIR, `${fileHash}${ext}`)
      const chunkDir = getChunkDir(params.fileHash!)
      const chunkPath = path.resolve(chunkDir, params.hash!)
      // 切片目录不存在,创建切片目录
      if (!(await fse.pathExists(chunkDir))) {
        await fse.mkdir(chunkDir, { recursive: true })
      }
    
      // 文件存在直接返回
      if (await fse.pathExists(filePath)) {
        ctx.body = {
          code: 1,
          message: 'file exist',
          data: { hash: fileHash }
        } as UploadChunkControllerResponse
        return
      }
      // 切片存在直接返回
      if (await fse.pathExists(chunkPath)) {
        ctx.body = {
          code: 2,
          message: 'chunk exist',
          data: { hash: fileHash }
        } as UploadChunkControllerResponse
        return
      }
      await fse.move(chunkFile.filepath, `${chunkDir}/${hash}`)
      ctx.body = {
        code: 0,
        message: 'received file chunk',
        data: { hash: params.fileHash }
      } as UploadChunkControllerResponse
    
      await next()
    }
    
    const controllers: Controller[] = [
      {
        method: 'POST',
        path: '/api/upload',
        fn: fnUpload,
        middleware: [koaBody({ multipart: true })]
      }
    ]
    
    export default controllers
  2. 切片合并: 当所有切片上传完成后,后端会根据前端传来的请求对切片进行合并。这里使用了 Node.js 的 Stream 进行并发写入,提高了合并效率,并减少了内存占用。

    tsx
    // merge.ts
    import { UPLOAD_DIR, extractExt, getChunkDir, isValidString } from '../utils'
    import { HttpError, HttpStatus } from '../utils/http-error'
    import type {
      IMergeChunksControllerParams,
      MergeChunksControllerResponse
    } from '../utils/types'
    import path from 'path'
    import fse from 'fs-extra'
    import { IMiddleware } from 'koa-router'
    import { Controller } from '../controller'
    import { Context } from 'koa'
    
    // 写入文件流
    const pipeStream = (
      filePath: string,
      writeStream: NodeJS.WritableStream
    ): Promise<boolean> => {
      return new Promise((resolve) => {
        const readStream = fse.createReadStream(filePath)
        readStream.on('end', () => {
          fse.unlinkSync(filePath)
          resolve(true)
        })
        readStream.pipe(writeStream)
      })
    }
    
    const mergeFileChunk = async (
      filePath: string,
      fileHash: string,
      size: number
    ) => {
      const chunkDir = getChunkDir(fileHash)
      const chunkPaths = await fse.readdir(chunkDir)
      // 切片排序
      chunkPaths.sort((a, b) => {
        return a.split('-')[1] - b.split('-')[1]
      })
      // 写入文件
      await Promise.all(
        chunkPaths.map((chunkPath, index) =>
          pipeStream(
            path.resolve(chunkDir, chunkPath),
            // 根据 size 在指定位置创建可写流
            fse.createWriteStream(filePath, {
              start: index * size
            })
          )
        )
      )
      // 合并后删除保存切片的目录
      fse.rmdirSync(chunkDir)
    }
    
    const fnMerge: IMiddleware = async (
      ctx: Context,
      next: () => Promise<void>
    ) => {
      const { filename, fileHash, size } = ctx.request
        .body as IMergeChunksControllerParams
      if (!isValidString(fileHash)) {
        throw new HttpError(HttpStatus.PARAMS_ERROR, 'fileHash 不能为空: ')
      }
      if (!isValidString(filename)) {
        throw new HttpError(HttpStatus.PARAMS_ERROR, 'filename 不能为空')
      }
      const ext = extractExt(filename!)
      const filePath = path.resolve(UPLOAD_DIR, `${fileHash}${ext}`)
      await mergeFileChunk(filePath, fileHash!, size!)
      ctx.body = {
        code: 0,
        message: 'file merged success',
        data: { hash: fileHash }
      } as MergeChunksControllerResponse
    
      await next()
    }
    
    const controllers: Controller[] = [
      {
        method: 'POST',
        path: '/api/merge',
        fn: fnMerge
      }
    ]
    
    export default controllers
  3. 全局异常处理与日志记录: 为了保证系统的稳定性,服务端实现了全局异常处理和日志记录功能,确保在出现问题时能快速定位并修复。

4. 遇到的问题与解决方案

在实现过程中,我们也遇到了一些挑战:

  • 代码结构混乱:在初期开发时,大量的代码逻辑被集中在一起,缺乏合理的抽象与封装。我们通过组件化、工具类方法抽取、状态逻辑分离等方式,逐步优化了代码结构。
  • 网络请求封装:为了提高代码的可维护性,我们封装了 Axios,并抽离了 API 相关操作。这样一来,未来即使更换网络请求库,也只需修改一个文件即可。
  • 并发请求过多:通过实现一个带有并发限制的 Scheduler,我们确保了系统的稳定性,避免了因过多并发请求导致的系统性能问题。

5. 开发流程图

大文件上传关键流程图

6. 总结

本文介绍了如何在 Vue 3 与 TypeScript 环境中实现大文件的分片上传,并在此基础上进行了多方面的优化。通过这些技术手段,我们不仅提升了系统的性能,还极大地改善了用户体验。随着数据量的不断增长,这种分片上传的方式将会越来越普及,并在未来的开发中发挥重要作用。

这种架构设计为处理大文件上传提供了一个高效、可靠的解决方案,并且具有很强的扩展性和可维护性。希望通过本文的介绍,能为大家在实际项目中解决类似问题提供一些参考和借鉴。

源码地址